9.2 Fundamentals

105

sigma summation Underscript j equals 1 Overscript n Endscripts upper P left brace upper A intersection upper E Subscript j Baseline right brace equals sigma summation Underscript j equals 1 Overscript m Endscripts upper P left brace upper E Subscript j Baseline right brace equals upper P left brace upper A right brace period

n

E

j=1

P{AE j} =

m

E

j=1

P{E j} = P{A} .

(9.22)

This result can be used to write the denominator of the right-hand side of Eq. (9.18)

as upper P left brace upper A vertical bar upper E Subscript k Baseline right brace upper P left brace upper E Subscript k Baseline right brace divided by upper P left brace upper A right braceP{A|Ek}P{Ek}/P{A}, but this, according to Eq. (9.16) and after cancelling,

equalsupper P left brace upper A intersection upper E Subscript k Baseline right brace divided by upper P left brace upper A right brace equals upper P left brace upper E Subscript k Baseline intersection upper A right brace divided by upper P left brace upper A right braceP{AEk}/P{A} = P{EkA}/P{A}, which, again using Eq. (9.16), equals

upper P left brace upper E Subscript k Baseline vertical bar upper A right braceP{Ek|A}. QED.

9.2.3

Bernoulli Trials

Bernoulli trials are defined as repeated (stochastically) independent trials 8 (hence,

probabilities multiply) with only two possible outcomes per trial—success (s) or

failure (f)—with respective constant (throughout the sequence of trials) probabilities

pp and q equals 1 minus pq = 1p. The sample space of each trial is StartSet s comma f EndSet{s, f}, and the sample space of

nn trials contains 2 Superscript n2n points. The event “kk successes, with k equals 0 comma 1 comma period period period comma nk = 0, 1, ..., n, and n minus knk

failures innn trials” can occur in as many ways askk letters can be distributed amongnn

places (the order of successes and failures does not matter), and each of theSuperscript n Baseline upper C Subscript k Baseline equals StartBinomialOrMatrix n Choose k EndBinomialOrMatrixnCk =

(n

k

)

points has probability p Superscript k Baseline q Superscript n minus kpkqnk. Hence, the probability of exactly kk successes in nn

trials is

b left parenthesis k semicolon n comma p right parenthesis equals StartBinomialOrMatrix n Choose k EndBinomialOrMatrix p Superscript k Baseline q Superscript n minus k Baseline periodb(k; n, p) =

(n

k

)

pkqnk .

(9.24)

This function is known as the binomial distribution because the terms are those of

the expansion of left parenthesis a plus b right parenthesis Superscript n(a + b)n (cf. Sect. 8.3).

Bernoulli trials are easily generalized to more than two outcomes. If the probability

of realizing an outcome upper E Subscript iEi is p Subscript i Baseline left parenthesis i equals 1 comma 2 comma ellipsis comma r right parenthesispi (i = 1, 2, . . . ,r) subject only to the condition

p 1 plus p 2 plus midline horizontal ellipsis plus p Subscript r Baseline equals 1 commap1 + p2 + · · · + pr = 1 ,

(9.25)

then the probability that in nn trials, upper E 1E1 occurs k 1k1 times, upper E 2E2 occurs k 2k2 times, and so

on is

StartFraction n factorial Over k 1 factorial k 2 factorial midline horizontal ellipsis k Subscript r Baseline factorial EndFraction p 1 Superscript k 1 Baseline p 2 Superscript k 2 Baseline midline horizontal ellipsis p Subscript r Superscript k Super Subscript r Superscript Baseline comma

n!

k1!k2! · · · kr! pk1

1 pk2

2 · · · pkr

r ,

(9.26)

where

k 1 plus k 2 plus midline horizontal ellipsis plus k Subscript r Baseline equals n periodk1 + k2 + · · · + kr = n .

(9.27)

8 Stochastic independence is formally defined via the condition

upper P left brace upper A upper H right brace equals upper P left brace upper A right brace upper P left brace upper H right brace commaP{AH} = P{A}P{H} ,

(9.23)

which must hold if the two events upper AA and upper HH are stochastically (sometimes called statistically)

independent.